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Abstract: Design of controller for the process operation is typically based on the availability of the best 

model. Development of empirical model is incorporated with many assumptions and approximations. 

System identification is developed to alleviate this problem by considering the input and output data of 

the process for the model development. The cascaded tank process is highly nonlinear and non-minimum 
phase process and often its working conditions are variable. Due to inadequacy of linear system 

identification to capture the dynamic of process, nonlinear system identification is incorporated. 

Identification of Cascaded two tank process using wiener model is reported.  Wiener model parameters 
are estimated using recursive prediction error method.  
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I. INTRODUCTION 

 

System identification is the process of 

constructing mathematical model from measured 

data. Most of the physical systems are nonlinear in 

nature. Linear Identification is not suitable for 

nonlinear systems. Identification of such nonlinear 

system is an important research area. Numerous 

methods are available for the identification of 

nonlinear systems includes [1], [2], [3], [4]. Chen et 

al describes the identification of discrete-time 

nonlinear systems using neural networks [1], Bohlin 

reported the grey-box identification to design a 
nonlinear model for the input/output data from strip 

steel rinsing process [2], Genetic Programming are 

applied to the identification of the nonlinear structure 

of a dynamic model from experimental data are 

proposed by Gray et al [3], and Li et al presented Fast 

Recursive Algorithm for the identification of 

nonlinear dynamic systems using linear in the 

parametric models with significant reduction in 

computational complexity and is numerically more 

stable than Orthogonal Least Square [4]. The 

Identification of nonlinear model can be represented 
by wiener model using Volterra series expansion 

characterization is given by Billings et al [5]. This 

approach overcomes many of the disadvantages 

associated with black-box identification and provides 

a very concise description of the process. Wigren 

proposed a recursive prediction error method has 

been derived from a SISO Wiener model [6]. A 

drawback is that the suggested scheme cannot be 

applied in a straightforward manner when the system 

is not asymptotically stable.  

To overcome this drawback, use Gaussian rather 
than bounded input in order to appropriately estimate 

the linear subsystem based on the observation data is 

given by Hu et all in [7] and [8]. All estimates for 

coefficients of the linear subsystem as well as for the 

values of the nonlinear block are given recursively 

with the help of Stochastic Approximation 

algorithms. The difference between these papers is 

the effective use of available information. In [7], only 

a part of data is used for the identification purpose 

while in [8] the whole sequence of data is employed. 

In this paper, the cascaded two tank process is 

identified using Recursive Prediction Error algorithm 
for Wiener model. 

  

II. SYSTEM DESCRIPTION 

 

The Cascaded two tank process is taken as a 

benchmark for the nonlinear identification is shown 

in Fig.1. Water is pumped to the upper tank. Control 

signal is applied to the pump in terms of voltage. The 

resulting water level is measured in the lower tank. 

Open outlet in the lower tank is demonstrated the 

nonlinear dynamics in the process due to the changes 
in the level of the tank. Voltage applied (u) to the 

pump and lower tank level (ym) is considered as input 

and output data respectively which is available in [9]. 



Linear dynamic 

system 

 

Static 
Nonlinearity 

 

u(n) y(n) yn(n) 

  
Figure 1 The cascaded two tank process 

III. NONLINEAR MODELS 

 

System Identification represents the 

mathematical relationships between the system's 

inputs u(t) and outputs y(t). It can be used to compute 

the current output from previous inputs and outputs. 

The general form of model in discrete time is: 

𝑦(𝑡)  =  𝑓(𝑢(𝑡 −  1),  𝑦(𝑡 −  1),  𝑢(𝑡 −  2),  𝑦(𝑡 −
 2), . . . )                                                                                   (1)  

Such a model is nonlinear if the function f is a 

nonlinear function. Block-oriented models are used to 

model nonlinear systems that can be represented by 
the interconnections of linear dynamics and static 

nonlinear elements. Wiener model consists of a linear 

dynamic system followed by a static nonlinearity, is 

shown in Fig.2.  

Figure 2 Wiener Model Structure 

Wiener models arise in practice whenever a 

measurement device has a nonlinear characteristic. If 

the output of a system depends nonlinearly on its 

inputs, it might be possible to decompose the input-

output relationship into two or more interconnected 

elements. 

IV. RECURSIVE PREDICTION ERROR 

IDENTIFICATION OF WIENER 

MODEL 

The Recursive identification of wiener model is 

obtained by Discontinuous Piecewise Linear 

Function [10], using optimal local linear models [11], 

two segment polynomial nonlinearities [12], non 
invertible piecewise linear function by following the 

use of ordinary recursive least square method [13]. A 

parameterization of a SISO Wiener model is 

presented with an algorithm for simultaneous 

recursive identification. Due to the cascade structure 

of the Wiener model, it is generally not possible to 

identify the linear dynamics independent of the static 

nonlinearity [14].  

 

The parameter vector 𝜃 is partitioned as  𝜃 =
(𝜃𝑙

𝑇  𝜃𝑛
𝑇)𝑇 , where 𝜃𝑙 is the parameter of linear block 

and 𝜃𝑛  is the parameter of static nonlinearity. The 

SISO linear dynamic block of the model is described 
by 

 

𝑦  𝑡 𝜃𝑙
  =

𝐵 𝑞−1 

𝐹 𝑞−1 
𝑢(𝑡)   (2)   (2) 

 

Where u(t) is the input signal and 𝑦 (𝑡 𝜃𝑙
 )  is the 

output.     

𝐵 𝑞−1 = 𝑏1𝑞
−1 + ⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏     (3) 
     

𝐹 𝑞−1 = 𝑓1𝑞
−1 + ⋯+ 𝑓𝑛𝑓𝑞

−𝑛𝑓         (4) 

     

𝜃𝑙 = (𝑓1 … 𝑓𝑛𝑓  𝑏1 …𝑏𝑛𝑓 )𝑇     (5) 

      

𝜑 𝑡,𝜃𝑙 = ( −𝑦 (𝑡 − 1 𝜃𝑙 …− 𝑦  𝑡 − 𝑛𝑓  𝜃𝑙   𝑢 𝑡 −

1…𝑢(𝑡−𝑛𝑏))𝑇      (6) 

The output from the nonlinear block is modeled as 

𝑦 𝑛  𝑡 𝜃𝑙 ,𝜃𝑛 = 𝑓𝑛 (𝜃𝑛 ,𝑦  𝑡 𝜃𝑙 )    (7) 

      

Where 𝑓𝑛 (. , . ) is a known function of 𝜃𝑛  and of 

𝑦  𝑡 𝜃𝑙 . In this paper, a piecewise linear model of the 

static nonlinearity will be used. Therefore 

𝑓𝑛 (𝜃𝑛 ,𝑦  𝑡 𝜃𝑙  is modeled as, 
 

𝑓𝑛 𝜃𝑛 ,𝑦  𝑡 𝜃𝑙  = 𝑘0𝑦  𝑡 𝜃𝑙 + 𝑓𝑛 ,0𝑦  𝑡 𝜃𝑙  𝜖 𝐼0    (8) 

     
 
In that interval, where 𝑓𝑛 ,0 is the bias parameter in 𝐼0. 

In order to describe the model outside Io, the 

following set user chosen grid points is introduced, 

 

grid=(𝑦−𝑘   𝑦−𝑘+1 …  𝑦0  𝑦0 …𝑦𝑘−1   𝑦𝑘)       (9) 
      
The complete parameter vector 𝜃𝑛  is therefore given 

by 

𝜃𝑛 = (𝑓𝑛 ,0  𝑓𝑛 ,−𝑘 …  𝑓𝑛 ,−1  𝑓𝑛 ,1 …  𝑓𝑛 ,𝑘)𝑇     (10) 

      



The complete RPEM for simultaneous recursive 

identification of the linear dynamics and the static 

nonlinearity is 

𝜀𝑛  𝑡 =  𝑦𝑛  𝑡 − 𝑦 𝑛 (𝑡)      (11) 

       
Torbjorn Wigren developed the MATLAB code for 

Recursive prediction error method which is 

considered for our study [6],[15]. 
Model Validation: 

The output of the model produces the best fit is 

computed using the following equation (12). In this 

equation, 𝑦𝑚  is the measured output, 𝑦𝑚𝑚𝑜𝑑  is the 

simulated or predicted model output with100% 

corresponds to a perfect fit. 

Best fit = 1 −  
 ym −ymmod  

 ym −mean (ym ) 
 ∗ 100    (12)      (12) 

 

V. RESULTS AND DISCUSSION 

The cascaded tank process input u and output ym data 

of 2500 values is plotted with respect to time is 

shown in Fig.3.  

 

Figure 3 Input Output response of Cascaded two tank process 

The evolution of the parameter estimates of linear 

and nonlinear parts are shown in Fig.4 and Fig.5 

 
        Figure 4 Parameter Estimates of Linear part 

 
      Figure 5 Parameter Estimate of Nonlinear part 

The output signal of the system (ym) and the 

simulated model (ymmod) using running parameter 

estimates are plotted with the computed output error 
as a function of time is shown in Fig.6. The simulated 

output errors are similar to the output with prediction 

error. The difference is that the simulated output 

errors are generated with the fixed parameter vector, 

obtained at the end of the identification run. This 

RPEM algorithm validates the estimated Wiener 

model by plotting the output signal from the system 

and the estimated model using the final value of the 

parameter vector with the residual signal is plotted in 

Fig.7 

 
           Figure 6 Model output with prediction error   
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           Figure 7 System/Model output with residuals 

 

VI. CONCLUSION 

The Wiener model are used in many domains for 

their simplicity and physical meaning, where the 

system steady-state behavior is determined 

completely by the static-nonlinearities, while the 

system dynamic behavior is determined by both the 
nonlinearities and the linear dynamic model 

components. Recursive Prediction Error Method 

allows the online identification of all linear model 

structure. RPEM is used to reduce the Mean Square 

Error (MSE). The Nonlinear modeling of the 

Cascaded two tank system using Wiener model is 

performed. Recursive Prediction Error Method using 

Wiener model is identified by considering the 

cascaded two tank data. In future, the recursive 

identification method will be extended to 

Hammerstein, Hammerstein-Wiener model and 

Uryson model.  
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